Eye Anatomy & Physiology: “Eyes and Their Care: An Introduction” 1941 ERPI Classroom Films04:33

  • 0
Published on April 17, 2017

Biology, Medicine, Anatomy, Physiology… playlist:

ERPI Films playlist:

more at

“Animated drawings explain physiology of sight; how eyeglasses work.”

Reupload of a previously uploaded film with improved video & sound.

Public domain film from the Library of Congress Prelinger Archives, slightly cropped to remove uneven edges, with the aspect ratio corrected, and one-pass brightness-contrast-color correction & mild video noise reduction applied.
The soundtrack was also processed with volume normalization, noise reduction, clipping reduction, and/or equalization (the resulting sound, though not perfect, is far less noisy than the original).

see also:
How the Eye Functions
How You See It
Color Harmony
Here’s Looking
The Nature of Light

Wikipedia license:

The human eye is an organ which reacts to light for several purposes. As a conscious sense organ, the mammalian eye allows vision. Rod and cone cells in the retina allow conscious light perception and vision including color differentiation and the perception of depth. The human eye can distinguish about 10 million colors.

In common with the eyes of other mammals, the human eye’s non-image-forming photosensitive ganglion cells in the retina receive the light signals which affect adjustment of the size of the pupil, regulation and suppression of the hormone melatonin and entrainment of the body clock…

General properties

The eye is not shaped like a perfect sphere, rather it is a fused two-piece unit. The smaller frontal unit, more curved, called the cornea is linked to the larger unit called the sclera. The corneal segment is typically about 8 mm (0.3 in) in radius. The sclerotic chamber constitutes the remaining five-sixths; its radius is typically about 12 mm. The cornea and sclera are connected by a ring called the limbus. The iris — the color of the eye — and its black center, the pupil, are seen instead of the cornea due to the cornea’s transparency. To see inside the eye, an ophthalmoscope is needed, since light is not reflected out. The fundus (area opposite the pupil) shows the characteristic pale optic disk (papilla), where vessels entering the eye pass across and optic nerve fibers depart the globe.

Dimensions

The dimensions differ among adults by only one or two millimeters. The vertical measure, generally less than the horizontal distance, is about 24 mm among adults, at birth about 16–17 millimeters (about 0.65 inch). The eyeball grows rapidly, increasing to 22.5–23 mm (approx. 0.89 in) by three years of age. By age 13, the eye attains its full size. The typical adult eye has an anterior to posterior diameter of 24 millimeters, a volume of six cubic centimeters (0.4 cu. in.), and a mass of 7.5 grams (weight of 0.25 oz.).

Components

The eye is made up of three coats, enclosing three transparent structures. The outermost layer is composed of the cornea and sclera. The middle layer consists of the choroid, ciliary body, and iris. The innermost is the retina, which gets its circulation from the vessels of the choroid as well as the retinal vessels, which can be seen in an ophthalmoscope.

Within these coats are the aqueous humor, the vitreous body, and the flexible lens. The aqueous humor is a clear fluid that is contained in two areas: the anterior chamber between the cornea and the iris, and the posterior chamber between the iris and the lens. The lens is suspended to the ciliary body by the suspensory ligament (Zonule of Zinn), made up of fine transparent fibers. The vitreous body is a clear jelly that is much larger than the aqueous humor, present behind lens and the rest, and is bordered by the sclera, zonule, and lens. They are connected via the pupil…

Enjoyed this video?
"No Thanks. Please Close This Box!"