X-Rays: “Taking the X out of X-Rays” circa 1940s General Electric 9min04:33

  • 0
Published on November 23, 2017

more at

“Demystifies X-rays and radiation.”

NEW VERSION with improved video & sound:

Public domain film from the Library of Congress Prelinger Archive, slightly cropped to remove uneven edges, with the aspect ratio corrected, and mild video noise reduction applied.
The soundtrack was also processed with volume normalization, noise reduction, clipping reduction, and equalization (the resulting sound, though not perfect, is far less noisy than the original).

X-radiation (composed of X-rays) is a form of electromagnetic radiation. X-rays have a wavelength in the range of 0.01 to 10 nanometers, corresponding to frequencies in the range 30 petahertz to 30 exahertz (3×1016 Hz to 3×1019 Hz) and energies in the range 100 eV to 100 keV. They are shorter in wavelength than UV rays and longer than gamma rays. In many languages, X-radiation is called Röntgen radiation, after Wilhelm Röntgen, who is usually credited as its discoverer, and who had named it X-radiation to signify an unknown type of radiation. Correct spelling of X-ray(s) in the English language includes the variants x-ray(s) and X ray(s). XRAY is used as the phonetic pronunciation for the letter x.

X-rays up to about 10 keV (10 to 0.10 nm wavelength) are classified as “soft” X-rays, and from about 10 to 120 keV (0.10 to 0.01 nm wavelength) as “hard” X-rays, due to their penetrating abilities.

Hard X-rays can penetrate some solids and liquids, and all uncompressed gases, and their most common use is to image of the inside of objects in diagnostic radiography and crystallography. As a result, the term X-ray is metonymically used to refer to a radiographic image produced using this method, in addition to the method itself. By contrast, soft X-rays hardly penetrate matter at all; the attenuation length of 600 eV (~2 nm) X-rays in water is less than 1 micrometer.

The distinction between X-rays and gamma rays has changed in recent decades. Originally, the electromagnetic radiation emitted by X-ray tubes had a longer wavelength than the radiation emitted by radioactive nuclei (gamma rays). Older literature distinguished between X- and gamma radiation on the basis of wavelength, with radiation shorter than some arbitrary wavelength, such as 10−11 m, defined as gamma rays. However, as shorter wavelength continuous spectrum “X-ray” sources such as linear accelerators and longer wavelength “gamma ray” emitters were discovered, the wavelength bands largely overlapped… X-rays are emitted by electrons outside the nucleus, while gamma rays are emitted by the nucleus. However, like all electromagnetic radiation, the properties of X-rays (or gamma rays) depend only on their wavelength and polarization…

German physicist Wilhelm Röntgen is usually credited as the discoverer of X-rays because he was the first to systematically study them, though he is not the first to have observed their effects. He is also the one who gave them the name “X-rays”, though many referred to these as “Röntgen rays” (and the associated X-ray radiograms as, “Röntgenograms”) for several decades after their discovery and to this day in some languages, including Röntgen’s native German, though “X-ray” overtook popular usage in English by 1980.

X-rays were found emanating from Crookes tubes, experimental discharge tubes invented around 1875, by scientists investigating the cathode rays, that is energetic electron beams, that were first created in the tubes. Crookes tubes created free electrons by ionization of the residual air in the tube by a high DC voltage of anywhere between a few kilovolts and 100 kV. This voltage accelerated the electrons coming from the cathode to a high enough velocity that they created X-rays when they struck the anode or the glass wall of the tube. Many of the early Crookes tubes undoubtedly radiated X-rays, because early researchers noticed effects that were attributable to them, as detailed below. Wilhelm Röntgen was the first to systematically study them, in 1895.

The important early researchers in X-rays were Nikola Tesla, Ivan Pulyui, William Crookes, Johann Wilhelm Hittorf, Eugen Goldstein, Heinrich Hertz, Philipp Lenard, Hermann von Helmholtz, Thomas Edison, Charles Glover Barkla, Max von Laue, and Wilhelm Conrad Röntgen…

William David Coolidge (October 23, 1873 — February 3, 1975) was an American physicist, who made major contributions to X-ray machines. He was the director of the General Electric Research Laboratory… famous for the invention of “ductile tungsten”, which is important for the incandescent light bulb…

In 1913 he invented the Coolidge tube, an X-ray tube with an improved cathode for use in X-ray machines that allowed for more intense visualization of deep-seated anatomy and tumors…

https://cafeadobro.ro/

https://www.stagebox.uk/wp-includes/depo10-bonus10/

https://iavec.com.br/

Enjoyed this video?
"No Thanks. Please Close This Box!"