How Lead is Mined & Refined: A Story Of Lead 1948 US Bureau of Mines; Lead Metal Mining & Refining

Published on October 19, 2017

more at

“Portrays mining operations in the lead belt of southeast Missouri–the crushing of ore, smelting, refining and other steps in the production of pig lead.”

Public domain film from the US National Archives, slightly cropped to remove uneven edges, with the aspect ratio corrected, and mild video noise reduction applied.
The soundtrack was also processed with volume normalization, noise reduction, clipping reduction, and/or equalization (the resulting sound, though not perfect, is far less noisy than the original).

Lead has been commonly used for thousands of years because it is widespread, easy to extract and easy to work with. It is highly malleable as well as easy to smelt. Metallic lead beads dating back to 6400 BCE have been found in Çatalhöyük in modern-day Turkey. In the early Bronze Age, lead was used with antimony and arsenic.

The largest preindustrial producer of lead was the Roman economy, with an estimated annual output of 80,000 tonnes, which was typically won as a by-product of extensive silver smelting. Roman mining activities occurred in Central Europe, Roman Britain, the Balkans, Greece, Asia Minor and Hispania which alone accounted for 40% of world production.

Roman lead pipes often bore the insignia of Roman emperors (see Roman lead pipe inscriptions). Lead plumbing in the Latin West may have been continued beyond the age of Theoderic the Great into the medieval period. Many Roman “pigs” (ingots) of lead figure in Derbyshire lead mining history and in the history of the industry in other English centers. The Romans also used lead in molten form to secure iron pins that held together large limestone blocks in certain monumental buildings. In alchemy, lead was thought to be the oldest metal and was associated with the planet Saturn. Alchemists accordingly used Saturn’s symbol (the scythe, ♄) to refer to lead.

Up to the 17th century, tin was often not distinguished from lead: lead was called plumbum nigrum (literally, “black lead”), while tin was called plumbum candidum (literally, “bright lead”)…

Most ores contain less than 10% lead, and ores containing as little as 3% lead can be economically exploited. Ores are crushed and concentrated by froth flotation typically to 70% or more. Sulfide ores are roasted, producing primarily lead oxide and a mixture of sulfates and silicates of lead and other metals contained in the ore. Lead oxide from the roasting process is reduced in a coke-fired blast furnace to the metal. Additional layers separate in the process and float to the top of the metallic lead. These are slag (silicates containing 1.5% lead), matte (sulfides containing 15% lead), and speiss (arsenides of iron and copper). These wastes contain concentrations of copper, zinc, cadmium, and bismuth that can be recovered economically, as can their content of unreduced lead.

Metallic lead that results from the roasting and blast furnace processes still contains significant contaminants of arsenic, antimony, bismuth, zinc, copper, silver, and gold. The melt is treated in a reverberatory furnace with air, steam, and sulfur, which oxidizes the contaminants except silver, gold, and bismuth. The oxidized contaminants are removed by drossing, where they float to the top and are skimmed off. Since lead ores contain significant concentrations of silver, the smelted metal also is commonly contaminated with silver. Metallic silver as well as gold is removed and recovered economically by means of the Parkes process. Desilvered lead is freed of bismuth according to the Betterton-Kroll process by treating it with metallic calcium and magnesium, which forms a bismuth dross that can be skimmed off. Very pure lead can be obtained by processing smelted lead electrolytically by means of the Betts process. The process uses anodes of impure lead and cathodes of pure lead in an electrolyte of silica fluoride…

https://cafeadobro.ro/

https://www.stagebox.uk/wp-includes/depo10-bonus10/

https://iavec.com.br/

Enjoyed this video?
"No Thanks. Please Close This Box!"