Engine & Motor Models: “We Use Power” 1956 Churchill Films; Electric Motor, Steam Engine…04:33

  • 0
Published on September 17, 2017

Technology Miscellany playlist:

more at

“Uses small models to explain how power is generated to run machines.”

Reupload of a previously uploaded film with improved video & sound.

Originally a public domain film from the Library of Congress Prelinger Archives, slightly cropped to remove uneven edges, with the aspect ratio corrected, and one-pass brightness-contrast-color correction & mild video noise reduction applied.
The soundtrack was also processed with volume normalization, noise reduction, clipping reduction, and/or equalization (the resulting sound, though not perfect, is far less noisy than the original).

Wikipedia license:

An electric motor is an electromechanical device that converts electrical energy into mechanical energy.

Most electric motors operate through the interaction of magnetic fields and current-carrying conductors to generate force. The reverse process, producing electrical energy from mechanical energy, is done by generators such as an alternator or a dynamo; some electric motors can also be used as generators, for example, a traction motor on a vehicle may perform both tasks. Electric motors and generators are commonly referred to as electric machines.

Electric motors are found in applications as diverse as industrial fans, blowers and pumps, machine tools, household appliances, power tools, and disk drives. They may be powered by direct current, e.g., a battery powered portable device or motor vehicle, or by alternating current from a central electrical distribution grid or inverter. The smallest motors may be found in electric wristwatches. Medium-size motors of highly standardized dimensions and characteristics provide convenient mechanical power for industrial uses. The very largest electric motors are used for propulsion of ships, pipeline compressors, and water pumps with ratings in the millions of watts. Electric motors may be classified by the source of electric power, by their internal construction, by their application, or by the type of motion they give.

The physical principle behind production of mechanical force by the interactions of an electric current and a magnetic field, Faraday’s law of induction, was discovered by Michael Faraday in 1831. Electric motors of increasing efficiency were constructed from 1821 through the end of the 19th century, but commercial exploitation of electric motors on a large scale required efficient electrical generators and electrical distribution networks. The first commercially successful motors were made around 1873.

Some devices convert electricity into motion but do not generate usable mechanical power as a primary objective, and so are not generally referred to as electric motors. For example, magnetic solenoids and loudspeakers are usually described as actuators and transducers, respectively, instead of motors. Some electric motors are used to produce torque or force…

A brushed DC motor has a set of rotating windings wound on an armature mounted on a rotating shaft. The shaft also carries the commutator a long-lasting rotary electrical switch that periodically reverses the flow of current in the rotor windings as the shaft rotates. Thus, every brushed DC motor has AC flowing through its rotating windings. Current flows through one or more pairs of brushes that bear on the commutator; the brushes connect an external source of electric power to the rotating armature.

The rotating armature consists of one or more coils of wire wound around a laminated, magnetically “soft” ferromagnetic core. Current from the brushes flows through the commutator and one winding of teh armature, making it a temporary magnet (an electromagnet). The magnets field produced by the armature interacts with a stationary magnetic field produced by either permanent magnets or another winding a field coil, as part of the motor frame. The force between the two magnetic fields tends to rotate the motor shaft. The commutator switches power to the coils as the rotor turns, keeping the magnetic poles of the rotor from ever fully aligning with the magnetic poles of the stator field, so that the rotor never stops (like a compass needle does), but rather keeps rotating as long as power is applied.

Many of the limitations of the classic commutator DC motor are due to the need for brushes to press against the commutator. This creates friction. Sparks are created by the brushes making and breaking circuits through the rotor coils as the brushes cross the insulating gaps between commutator sections… The making and breaking of electric contact also generates electrical noise; sparking generates RFI….

Enjoyed this video?
"No Thanks. Please Close This Box!"