Concrete Construction Science: “Hydration of Cement” 1995 National Science Foundation ACBM04:33

  • 0
Published on May 12, 2017

Construction, Building, Maintenance, Repair… playlist:

more at

National Science Foundation, Center for Advanced Cement-based Materials

“Hydration is the chemical reaction between cement and water that binds the cement, water and aggregate into concrete. The strength of the finished concrete depends on proper and sufficient hydration. This video reviews the mechanics of cement hydration. Of practical interest, are the methods used to control hydration rate in field applications: the effects of time, temperature, cement type, and admixtures on the rate of hydration. Of academic interest, are the techniques used in the laboratory to study hydration: mathematical modeling of cement hydration; measuring the heat generated over time from hydration; methods used to monitor hydration; thermogravimetric analysis and electrical resistance/impedance measurements; study of the fluid properties of concrete and others.”

Reupload of a previously uploaded film with improved video & sound.

Public domain film from the US National Archives, slightly cropped to remove uneven edges, with the aspect ratio corrected, and one-pass brightness-contrast-color correction & mild video noise reduction applied.
The soundtrack was also processed with volume normalization, noise reduction, clipping reduction, and/or equalization (the resulting sound, though not perfect, is far less noisy than the original).

Portland cement (often referred to as OPC, from Ordinary Portland Cement) is the most common type of cement in general use around the world because it is a basic ingredient of concrete, mortar, stucco and most non-specialty grout. It is a fine powder produced by grinding Portland cement clinker (more than 90%), a limited amount of calcium sulfate (which controls the set time) and up to 5% minor constituents as allowed by various standards such as the European Standard EN197-1:

Portland cement clinker is a hydraulic material which shall consist of at least two-thirds by mass of calcium silicates (3 CaO·SiO2 and 2 CaO·SiO2), the remainder consisting of aluminium- and iron-containing clinker phases and other compounds. The ratio of CaO to SiO2 shall not be less than 2.0. The magnesium oxide content (MgO) shall not exceed 5.0% by mass.

(The last two requirements were already set out in the German Standard, issued in 1909).

ASTM C 150 defines portland cement as “hydraulic cement (cement that not only hardens by reacting with water but also forms a water-resistant product) produced by pulverizing clinkers consisting essentially of hydraulic calcium silicates, usually containing one or more of the forms of calcium sulfate as an inter ground addition.” Clinkers are nodules (diameters, 0.2-1.0 inch [5–25 mm]) of a sintered material that is produced when a raw mixture of predetermined composition is heated to high temperature…

Portland cement clinker is made by heating, in a kiln, a homogeneous mixture of raw materials to a sintering temperature, which is about 1450 °C for modern cements. The aluminium oxide and iron oxide are present as a flux and contribute little to the strength. For special cements, such as Low Heat (LH) and Sulfate Resistant (SR) types, it is necessary to limit the amount of tricalcium aluminate (3 CaO·Al2O3) formed. The major raw material for the clinker-making is usually limestone (CaCO3) mixed with a second material containing clay as source of alumino-silicate. Normally, an impure limestone which contains clay or SiO2 is used. The CaCO3 content of these limestones can be as low as 80%. Second raw materials (materials in the rawmix other than limestone) depend on the purity of the limestone. Some of the second raw materials used are clay, shale, sand, iron ore, bauxite, fly ash and slag…

Portland cement was developed from natural cements made in Britain in the early part of the nineteenth century, and its name is derived from its similarity to Portland stone, a type of building stone that was quarried on the Isle of Portland in Dorset, England.

The Portland cement is considered to originate from Joseph Aspdin, a British bricklayer from Leeds. It was one of his employees (Isaac Johnson), however, who developed the production technique, which resulted in a more fast-hardening cement with a higher compressive strength. This process was patented in 1824. His cement was an artificial cement similar in properties to the material known as “Roman cement” (patented in 1796 by James Parker) and his process was similar to that patented in 1822 and used since 1811 by James Frost who called his cement “British Cement”. The name “Portland cement” is also recorded in a directory published in 1823 being associated with a William Lockwood, Dave Stewart, and possibly others…

https://cafeadobro.ro/

https://www.stagebox.uk/wp-includes/depo10-bonus10/

https://iavec.com.br/

Enjoyed this video?
"No Thanks. Please Close This Box!"