Characteristics of Crystals 1964 US Air Force Electronics Training Film04:33

  • 0
Published on March 1, 2017

more at:

“STRESSES THE IMPORTANCE OF FREQUENCY STABILITY AND INTRODUCES THE CRYSTAL CONTROLLED OSCILLATOR AS A POSSIBLE DEVICE USED TO OBTAIN THIS STABILITY. EXPLAINS THE PIEZOELECTRIC EFFECT OF A CRYSTAL, LISTS TYPES OF CRYSTALS HAVING THE PIEZOELECTRIC EFFECT, AND POINTS OUT THE RELATIONSHIP BETWEEN CRYSTAL THICKNESS AND FREQUENCY. VARIOUS CRYSTAL CUTS ARE EXPLAINED AND SHOWN GRAPHICALLY. THE Q OF THE CRYSTAL CIRCUIT IS EXPLAINED, AND BOTH THE PHYSICAL DIMENSIONS AND ELECTRICAL CHARACTERISTICS OF A TYPICAL CRYSTAL ARE DISCUSSED.”

US Air Force Training Film TV-513

Electronics playlist:

Public domain film from the US National Archives, slightly cropped to remove uneven edges, with the aspect ratio corrected, and one-pass brightness-contrast-color correction & mild video noise reduction applied.
The soundtrack was also processed with volume normalization, noise reduction, clipping reduction, and/or equalization (the resulting sound, though not perfect, is far less noisy than the original).

A crystal oscillator is an electronic oscillator circuit that uses the mechanical resonance of a vibrating crystal of piezoelectric material to create an electrical signal with a precise frequency. This frequency is commonly used to keep track of time, as in quartz wristwatches, to provide a stable clock signal for digital integrated circuits, and to stabilize frequencies for radio transmitters and receivers. The most common type of piezoelectric resonator used is the quartz crystal, so oscillator circuits incorporating them became known as crystal oscillators, but other piezoelectric materials including polycrystalline ceramics are used in similar circuits.

Quartz crystals are manufactured for frequencies from a few tens of kilohertz to hundreds of megahertz. More than two billion crystals are manufactured annually. Most are used for consumer devices such as wristwatches, clocks, radios, computers, and cellphones. Quartz crystals are also found inside test and measurement equipment, such as counters, signal generators, and oscilloscopes…

Piezoelectricity was discovered by Jacques and Pierre Curie in 1880. Paul Langevin first investigated quartz resonators for use in sonar during World War I. The first crystal-controlled oscillator, using a crystal of Rochelle salt, was built in 1917 and patented in 1918 by Alexander M. Nicholson at Bell Telephone Laboratories, although his priority was disputed by Walter Guyton Cady. Cady built the first quartz crystal oscillator in 1921. Other early innovators in quartz crystal oscillators include G. W. Pierce and Louis Essen…

Quartz crystal oscillators were developed for high-stability frequency references during the 1920s and 1930s. Prior to crystals, radio stations controlled their frequency with tuned circuits, which could easily drift off frequency by 3-4 kHz. Since broadcast stations were assigned frequencies only 10 kHz apart, interference between adjacent stations due to frequency drift was a common problem. In 1925 Westinghouse installed a crystal oscillator in its flagship station KDKA, and by 1926 quartz crystals were used to control the frequency of many broadcasting stations and were popular with amateur radio operators. In 1928, Warren Marrison of Bell Telephone Laboratories developed the first quartz crystal clock. With accuracies of up to 1 sec in 30 years (30 ms/year or 10−7), quartz clocks replaced precision pendulum clocks as the world’s most accurate timekeepers until atomic clocks were developed in the 1950s. Utilizing the early work at Bell Labs, AT&T eventually established their Frequency Control Products division, later spun off and known today as Vectron International.

A number of firms started producing quartz crystals for electronic use during this time. Using what are now considered primitive methods, about 100,000 crystal units were produced in the United States during 1939. Through World War II crystals were made from natural quartz crystal, virtually all from Brazil. Shortages of crystals during the war caused by the demand for accurate frequency control of military and naval radios and radars spurred postwar research into culturing synthetic quartz, and by 1950 a hydrothermal process for growing quartz crystals on a commercial scale was developed at Bell Laboratories. By the 1970s virtually all crystals used in electronics were synthetic.

In 1968, Juergen Staudte invented a photolithographic process for manufacturing quartz crystal oscillators while working at North American Aviation (now Rockwell) that allowed them to be made small enough for portable products like watches.

Although crystal oscillators still most commonly use quartz crystals, devices using other materials are becoming more common, such as ceramic resonators…

Enjoyed this video?
"No Thanks. Please Close This Box!"