Beechcraft Model 18: “Dead Reckoning Procedure for Aircraft Navigation” 1942 US Army Air Forces04:33

  • 0
Published on January 31, 2017

Pilot Training Film playlist:

more at:

Aviation navigation by dead reckoning, United States Army Air Forces Training Film TF1-326. The aircraft is a Beechcraft Model 18 military variant, possibly a C-45 or an AT-7.

Public domain film from the US Army, slightly cropped to remove uneven edges, with the aspect ratio corrected, and one-pass brightness-contrast-color correction & mild video noise reduction applied.
The soundtrack was also processed with volume normalization, noise reduction, clipping reduction, and/or equalization (the resulting sound, though not perfect, is far less noisy than the original).

The Beechcraft Model 18 (or “Twin Beech”, as it is also known) is a six to 11-seat, twin-engined, low-wing, tailwheel light aircraft manufactured by the Beech Aircraft Corporation of Wichita, Kansas. Continuously produced from 1937 to November 1969 (over 32 years, the world record at the time), over 9,000 were produced, making it one of the world’s most widely used light aircraft. Sold worldwide as a civilian executive, utility, cargo aircraft, and passenger airliner on tailwheels, nosewheels, skis or floats, it was also used as a military aircraft.

During and after World War II, over 4,500 Beech 18s saw military service—as light transport, light bomber (for China), aircrew trainer (for bombing, navigation and gunnery), photo-reconnaisance, and “mother ship” for target drones—including United States Army Air Forces (USAAF) C-45 Expeditor, AT-7 Navigator, AT-11 Kansan; and United States Navy (USN) UC-45J Navigator, SNB-1 Kansan, and others. In World War II, over 90% of USAAF bombardiers and navigators trained in these aircraft.

In the early postwar era, the Beech 18 was the pre-eminent “business aircraft” and “feeder airliner.” Besides carrying passengers, its civilian uses have included aerial spraying, sterile insect release, fish seeding, dry ice cloud seeding, aerial firefighting, air mail delivery, ambulance service, numerous movie productions, skydiving, freight, weapon- and drug-smuggling, engine testbed, skywriting, banner towing, and stunt aircraft. Many are now privately owned, around the world, with over 300 in the U.S. still on the FAA Aircraft Registry in December 2014…

In navigation, dead reckoning or dead-reckoning (also ded for deduced reckoning or DR) is the process of calculating one’s current position by using a previously determined position, or fix, and advancing that position based upon known or estimated speeds over elapsed time and course. The corresponding term in biology, used to describe the processes by which animals update their estimates of position or heading, is path integration.
Drift is the angle between the heading of the airplane and the desired track. A is the last known position (fix, usually shown with a circle). B is the air position (usually shown with a plus sign). C is the DR position (usually shown with a triangle).

Dead reckoning is subject to cumulative errors… inertial navigation systems, which provide very accurate directional information, use dead reckoning and are very widely applied…

Air navigation

On May 21, 1927 Charles Lindbergh landed in Paris, France after a successful non-stop flight from the United States in the single-engined Spirit of St. Louis. This aircraft was equipped with very basic instruments. He used dead reckoning to find his way.

Dead reckoning in the air is similar to dead reckoning on the sea, but slightly more complicated. The density of the air the aircraft moves through affects its performance as well as winds, weight, and power settings.

The basic formula for DR is Distance = Speed x Time. An aircraft flying at 250 knots airspeed for 2 hours has flown 500 nautical miles through the air. The wind triangle is used to calculate the effects of wind on heading and airspeed to obtain a magnetic heading to steer and the speed over the ground (groundspeed). Printed tables, formulae, or an E6B flight computer are used to calculate the effects of air density on aircraft rate of climb, rate of fuel burn, and airspeed.

A course line is drawn on the aeronautical chart along with estimated positions at fixed intervals (say every ½ hour). Visual observations of ground features are used to obtain fixes. By comparing the fix and the estimated position corrections are made to the aircraft’s heading and groundspeed…

Enjoyed this video?
"No Thanks. Please Close This Box!"