Atomic Weapons Support Operations (Orientation Part 4) ~ 1959 AFSWP-USAF

Published on December 5, 2017

Nuclear Weapons & War, Atomic Reactors & Radiation playlist:

more at

Overview of nuclear weapons system maintenance & logistics.

Reupload of a previously uploaded film with improved video & sound.

Originally a public domain film from the US National Archives, slightly cropped to remove uneven edges, with the aspect ratio corrected, and one-pass brightness-contrast-color correction & mild video noise reduction applied.
The soundtrack was also processed with volume normalization, noise reduction, clipping reduction, and/or equalization (the resulting sound, though not perfect, is far less noisy than the original).

Wikipedia license:

A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission or a combination of fission and fusion. Both reactions release vast quantities of energy from relatively small amounts of matter. The first fission (“atomic”) bomb test released the same amount of energy as approximately 20,000 tons of TNT. The first thermonuclear (“hydrogen”) bomb test released the same amount of energy as approximately 10,000,000 tons of TNT.

A modern thermonuclear weapon weighing little more than 2,400 pounds (1,100 kg) can produce an explosive force comparable to the detonation of more than 1.2 million tons (1.1 million tonnes) of TNT. Thus, even a small nuclear device no larger than traditional bombs can devastate an entire city by blast, fire and radiation. Nuclear weapons are considered weapons of mass destruction, and their use and control have been a major focus of international relations policy since their debut.

Only two nuclear weapons have been used in the course of warfare, both by the United States near the end of World War II. On 6 August 1945, a uranium gun-type fission bomb code-named “Little Boy” was detonated over the Japanese city of Hiroshima. Three days later, on 9 August, a plutonium implosion-type fission bomb code-named “Fat Man” was exploded over Nagasaki, Japan. These two bombings resulted in the deaths of approximately 200,000 people…

Since the bombings of Hiroshima and Nagasaki, nuclear weapons have been detonated on over two thousand occasions… The only countries known to have detonated nuclear weapons—and that acknowledge possessing such weapons—are… the United States, the Soviet Union… the United Kingdom, France, the People’s Republic of China, India, Pakistan, and North Korea. In addition, Israel is also widely believed to possess nuclear weapons…

The Federation of American Scientists estimates there are more than 17,000 nuclear warheads in the world as of 2012, with around 4,300 of them considered “operational”, ready for use…

Fission weapons

All existing nuclear weapons derive some of their explosive energy from nuclear fission reactions. Weapons whose explosive output is exclusively from fission reactions are commonly referred to as atomic bombs or atom bombs (abbreviated as A-bombs). This has long been noted as something of a misnomer, as their energy comes from the nucleus of the atom.

In fission weapons, a mass of fissile material (enriched uranium or plutonium) is assembled into a supercritical mass—the amount of material needed to start an exponentially growing nuclear chain reaction—either by shooting one piece of sub-critical material into another (the “gun” method) or by compressing a sub-critical sphere of material using chemical explosives to many times its original density (the “implosion” method). The latter approach is considered more sophisticated than the former and only the latter approach can be used if the fissile material is plutonium.

A major challenge in all nuclear weapon designs is to ensure that a significant fraction of the fuel is consumed before the weapon destroys itself. The amount of energy released by fission bombs can range from the equivalent of less than a ton of TNT upwards of 500,000 tons (500 kilotons) of TNT…

The most commonly used fissile materials for nuclear weapons applications have been uranium-235 and plutonium-239. Less commonly used has been uranium-233…

Fusion weapons

The other basic type of nuclear weapon produces a large proportion of its energy in nuclear fusion reactions. Such fusion weapons are generally referred to as thermonuclear weapons or more colloquially as hydrogen bombs (abbreviated as H-bombs), as they rely on fusion reactions between isotopes of hydrogen (deuterium and tritium). All such weapons derive a significant portion, and sometimes a majority, of their energy from fission. This is because a fission weapon is required as a “trigger” for the fusion reactions, and the fusion reactions can themselves trigger additional fission reactions…

Enjoyed this video?
"No Thanks. Please Close This Box!"