Sound Waves in Air 1961 PSSC; Richard Bolt, MIT; Acoustic Lens Demonstration04:33

  • 0
Published on December 28, 2017

Physical Science Study Committee Films (PSSC) playlist:

Physics & Physical Sciences playlist:

“Professor Richard H. Bolt [ [Massachusetts Institute of Technology, Bolt, Beranek and Newman, BBN Technologies] discusses sound wave phenomena, how sound travels, and how it is reflected. The film demonstrates that sound is a wave phenomenon and thus can also move around barriers. Also the film shows how sound waves can be refracted through a lens.”

Public domain film, slightly cropped to remove uneven edges, with the aspect ratio corrected, and one-pass brightness-contrast-color correction & mild video noise reduction applied.
The soundtrack was also processed with volume normalization, noise reduction, clipping reduction, and/or equalization (the resulting sound, though not perfect, is far less noisy than the original).

Wikipedia license:

In physics, sound is a vibration that propagates as a typically audible mechanical wave of pressure and displacement, through a transmission medium such as air or water. In physiology and psychology, sound is the reception of such waves and their perception by the brain. Humans can hear sound waves with frequencies between about 20 Hz and 20 kHz. Sound above 20 kHz is ultrasound and below 20 Hz is infrasound. Other animals have different hearing ranges…

Sound is transmitted through gases, plasma, and liquids as longitudinal waves, also called compression waves. It requires a medium to propagate. Through solids, however, it can be transmitted as both longitudinal waves and transverse waves. Longitudinal sound waves are waves of alternating pressure deviations from the equilibrium pressure, causing local regions of compression and rarefaction, while transverse waves (in solids) are waves of alternating shear stress at right angle to the direction of propagation.

Sound waves may be “viewed” using parabolic mirrors and objects that produce sound.

The energy carried by an oscillating sound wave converts back and forth between the potential energy of the extra compression (in case of longitudinal waves) or lateral displacement strain (in case of transverse waves) of the matter, and the kinetic energy of the displacement velocity of particles of the medium…

In physics, a wave is an oscillation accompanied by a transfer of energy that travels through a medium (space or mass). Frequency refers to the addition of time. Wave motion transfers energy from one point to another, which displace particles of the transmission medium–that is, with little or no associated mass transport. Waves consist, instead, of oscillations or vibrations (of a physical quantity), around almost fixed locations.

A wave is a disturbance that transfers energy through matter or space There are two main types of waves. Mechanical waves propagate through a medium, and the substance of this medium is deformed. Restoring forces then reverse the deformation. For example, sound waves propagate via air molecules colliding with their neighbors. When the molecules collide, they also bounce away from each other (a restoring force). This keeps the molecules from continuing to travel in the direction of the wave.

The second main type, electromagnetic waves, do not require a medium. Instead, they consist of periodic oscillations of electrical and magnetic fields originally generated by charged particles, and can therefore travel through a vacuum. These types vary in wavelength, and include radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.

Waves are described by a wave equation which sets out how the disturbance proceeds over time. The mathematical form of this equation varies depending on the type of wave. Further, the behavior of particles in quantum mechanics are described by waves. In addition, gravitational waves also travel through space, which are a result of a vibration or movement in gravitational fields.

A wave can be transverse, where a disturbance creates oscillations that are perpendicular to the propagation of energy transfer, or longitudinal: the oscillations are parallel to the direction of energy propagation. While mechanical waves can be both transverse and longitudinal, all electromagnetic waves are transverse in free space…

Enjoyed this video?
"No Thanks. Please Close This Box!"